Please check that this question paper contains 09 questions and 02 printed pages within first ten minutes.

1 0 MAR 2021

[Total No. of Questions: 09]

[Total No. of Pages: 02]

Uni. Roll No.

Program/ Course: B.Tech. (Sem. 3rd)

Name of Subject: Network Analysis and Synthesis

Subject Code: PCEC-102 Paper ID: 16032

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Parts A and B are compulsory

2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice

3) Any missing data may be assumed appropriately

Part - A

[Marks: 02 each]

01.

- a) State Superposition theorem.
- b) Differentiate dependent and independent sources.
- c) Find inverse Laplace transform of $F(s) = \frac{3s}{(s+2)(s+4)}$
- d) What is the significance of a 'pole' and a 'zero' in S-domain?
- e) Discuss the limitations of Const-K type filters
- f) Write the expression for Final Value theorem. Apply the same for the given function $\frac{(5s+3)(s+8)}{s(s+1)(s+2)}$

Part - B

[Marks: 04 each]

- Q2. A coil having resistance of 10 Ω and inductance of 1H is switched on to a direct voltage of 100V. Calculate the rate of change of the current (a) at the instant of closing the switch and (b) when t=L/R.
- Q3. State maximum power transfer theorem. Also, prove the condition; $R_L = R_{TH}$
- Q4. Define "Impedance function". List the properties of R-C driving point impedance function.
- Q5. Design a Const-K type BPF to be terminated in 600Ω resistance having cut-off frequencies of 2 KHz and 5 KHz.
- Q6. Explain in detail the concept of cut set and tie set.

Q7. State and prove Convolution theorem in pretext to network theory.

EVENING

Part - C

[Marks: 12 each]

Q8. Define Thevenin's theorem. Write atleast its two limitations. Find the power loss in the 10Ω resistor in Figure 1.

Figure 1

OR

Design the following networks for the impedance function

$$Z(s) = \frac{s(s^2 + 4)}{(s^2 + 1)(s^2 + 9)}$$

- (i) Foster-I
- (ii) Cauer-I
- Q9. Prove that Norton's equivalent circuit is dual of Thevenin's equivalent circuit.

OR

State an advantage of m-derived filter over Cont-K type filter. Also, design an m-derived low pass filter to match a line having characteristic impedance of 500 Ω and to pass signals upto 1 KHz with infinite attenuation occurring at 1.2 KHz.

PAGE 2 OF 2